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Introduction Applications ofMerge Operator Challenges Key Ideas

Intersection Types

• A term e having the type A& Bmeans e has both A and B.

• Originally introduced by Coppo et al.
1
, it allows λx. x x to be typed ((A→ B) & A) → B.

• In languages like TypeScript, the intersection types are explicitly inhabitated.

interface Name { name: string; }
interface ID { id: number; }
type Person = Name & ID
let e : Person = { id: 42, name: 'Alice'};

1
Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. “Functional characters of solvable

terms”. In:Mathematical Logic Quarterly 27.2-6 (1981), pp. 45–58.
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Merge Operator
3

• e1, , e2means it can be used as e1 or e2.

• Force intersection types to be explicitly introduced and inhabitated.
• Typing for merge is

2

T-Mrg

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B
Γ ⊢ e1 , , e2 ⇒ A&B

• Merge operator adds expressive power and enables many applications.

2
We use bidirectional typing, Γ ⊢ e ⇔ A, and⇔::=⇐|⇒
3
Jana Dunfield. “Elaborating intersection and union types”. In: Journal of Functional Programming 24.2-3

(2014), pp. 133–165.
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Extensible Records
4

• Records can be represented by syntactic sugar of merge operator.
• {x = e1, y = e2, z = e3} can be viewed as {x = e1}, , {y = e2}, , {z = e3}.

• Record width subtyping for free.

{li : Ti}i=1..n..n+k <: {li : Ti}1..n

is subsumed by

{l1 : A}& {l2 : B} <: {l1 : A}

is subsumed by

A& B <: A

4
Luca Cardelli and John CMitchell. “Operations on records”. In:Mathematical structures in computer science 1.1

(1991), pp. 3–48.
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Record Projection

• Record Projection is standard.

({x = e1}, , {y = e2}).x ↪→ e1

({x = e1}, , {y = e2}).y ↪→ e2

• Record Concatenation is simply merging.

({x = e1}, , {y = e2}), , {z = e3}
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Overloaded Functions
5

• Function implementation varies depending on the types of arguments.

• Consider Haskell’s show function.
show :: Show a => a -> String
instance Show Int where

show = showInt
instance Show Bool where

show = showBool
-- instance will be selected according to the argument type
show 1 ↪→ showInt 1 ↪→ "1"
show true ↪→ showBool true ↪→ "true"

• show can be defined as showInt„showBool

5
Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. “A calculus for overloaded functions with

subtyping”. In: Information and Computation 117.1 (1995), pp. 115–135.
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Overloaded Application

• Overloaded Application is standard.

show : (Int -> String) & (Bool -> String)
show = showInt,,showBool
show 1 ↪→ showInt 1 ↪→ "1"
show true ↪→ showBool true ↪→ "true"

• Adding overloading instances is simply by merging.

newShow = show,,showDouble
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Return type Overloading
6

• Function implementation varies depending on the surrounding contexts.

• Consider Haskell’s read function
read :: Read a => String -> a
instance Read Int where

read = readInt
instance Read Bool where

read = readBool
-- instance will be selected according to surrounding contexts
succ (read "1") ↪→ 2
not (read "true") ↪→ false

• Calculi with merge operator can do in a similar way.

read : (String -> Int) & (String -> Bool)
read = readInt,,readBool

6
Koar Marntirosian et al. “Resolution as Intersection Subtyping via Modus Ponens”. In: Proc. ACMProgram.

Lang. 4.OOPSLA (2020).
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Nested Composition
7

• It reflects distributivity of intersection types at the term level.

{l : A}& {l : B} <: {l : A& B} S-Distri-Rcd

(A→ B) & (A→ C) <: A→ (B& C) S-Distri-Arr

• Results extracted from nested terms will be composed when eliminating terms

created by the merge operator.

7
Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. “The essence of nested composition”. In: 32nd

European Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik. 2018.
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Nested Composition via Projection and Application

• For records

({x = e1}, , {x = e2}).x ↪→ e1, , e2

• For overloaded functions

f : Int → Int → Int
g : Int → Bool→ Bool
(f , , g) 1 ↪→ (f 1), , (g 1)

• Both cases are "unnatural"

since we allow repeated labels and ambiguous overloaded application.
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Goodness of Nested Composition

• [Nested record composition] Key feature of Compositional Programming8.
◦ solves the Expression Problem naturally.

◦ models forms of family polymorphism.

• [Nested function composition] It enables first-class curried overloaded functions.
◦ overloaded functions are default curried;

◦ we can abstract and return overloaded functions in a flexible way;

◦ it’s a novel and interesting finding in this work.

8
Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. “Compositional Programming”. In: ACM

Transactions on Programming Languages and Systems (TOPLAS) 43.3 (2021), pp. 1–61.
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Challenges in Type Inference

In traditional calculi, we have the typing rule for application:

Γ ⊢ e1 ⇒ A→ B Γ ⊢ e2 ⇐ A
Γ ⊢ e1 e2 ⇒ B

T-App

This does not apply to case show 1, where

Γ ⊢ show⇒ A& B Γ ⊢ e2 ⇐ ?

Γ ⊢ e1 e2 ⇒ ?
T-App
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Challenges in Type Inference

A direct method is to:

1. assume we have the argument type A;
2. assume the type of function to be a intersection of function types:

(A1 → B1) & (A2 → B2) & ...& (An → Bn)

3. then iterate intersection types by comparing the argument type A and input type Ai;
4. compose the outputs as the result type
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Challenges in Dynamic Semantics

A direct method is to:

1. assume the overloaded function to be a merge of functions,

2. then select correct instances according to the types.

◦ call-by-value strategy

◦ type-dependent semantics
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Distributivity Breaks the Assumptions

pshow : Unit -> (Int -> String) & (Bool -> String)
pshow = λx. show
pshow unit 1 ↪→ "1"
pshow unit true ↪→ "true"

• pshow is not a merge of functions (wrapped in a lambda);
• its type is not a intersection of function types;
• it’s still treated as an overloaded function.
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Re-interpret Subtyping

We can have two interpretations of A <: B→ C:
• Suppose A, B and C are given, we tell whether the subtyping holds.

(Int → String) & (Bool→ String) <: Int → String

• Suppose A and B are given, we infer the result type C9.

(Int → String) & (Bool→ String) <: Int → ?

9
which is also the type of overloaded application.
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Applicative Subtyping

A≪ S is a specialized subtyping used to infer the type of applications and projections
10
.

A1 → A2 ≪ B = A2 when B <: A1 (1)

A1 → A2 ≪ B = . when¬(B <: A1) (2)

{l = A} ≪ l = A (3)

{l1 = A} ≪ l2 = . when l1 ̸= l2 (4)

A1 & A2 ≪ S = (A1 ≪ S)⊚ (A2 ≪ S) (5)

A≪ S = . otherwise (6)

10S ::= A | l, Selector S is either type A or label l
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Examples of Applicative Subtyping

show 1

(Int → String) & (Bool→ String) ≪ Int
by (5) ↪→ (Int → String) ≪ Int ⊚ (Bool→ String) ≪ Int

by (1) (2) ↪→ String⊚ .

read "1"

(String→ Int) & (String→ Bool) ≪ String
by (5) ↪→ (String→ Int) ≪ String⊚ (String→ Bool) ≪ String
by (1) ↪→ Int ⊚ Bool
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Composition Operators

One version that implements nested composition semantics 11.

.⊚ . = .

A1 ⊚ . = A1
.⊚ A2 = A2
A1 ⊚ A2 = A1 & A2

11
We have another version of the operator which models the overloading semantics
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Examples (applying nested composition semantics)

(Int → String) & (Bool→ String) ≪ Int = String
(String→ Int) & (String→ Bool) ≪ String = Int & Bool

{x : String}& {y : String} ≪ y = String
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Let arguments go "together"

We infer both the type of function (merges) and argument together and then compute.

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B A≪ B = C
Γ ⊢ e1 e2 ⇒ C

T-App
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Examples (applying nested composition semantics)

We assume Γ is f : I→ I→ I, g : I→ B→ B. 12

Γ ⊢ (f , , g) ⇒ (I→ I→ I) & (I→ B→ B) Γ ⊢ 2⇒ I

Γ ⊢ (f , , g) 2⇒ (I→ I) & (B→ B)
T-App

Γ ⊢ true⇒ B
Γ ⊢ (f , , g) 2 true⇒ B

T-App

1. f , , g
2. (f , , g) 2
3. (f , , g) 2 true

12I stands for Int, B stands for Bool.
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Metatheory

(Int → String) & (Bool→ String) ≪ Int = String
(String→ Int) & (String→ Bool) ≪ String = Int & Bool

{x : String}& {y : String} ≪ y = String

(Int → String) & (Bool→ String) <: Int → String
(String→ Int) & (String→ Bool) <: String→ Int & Bool

{x : String}& {y : String} <: {y : String}
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Metatheory

Lemma (Soundness (Function))

If A≪ B = C, then A <: B→ C.

Lemma (Completeness (Function))

If A <: B→ C, then ∃D,A≪ B = D∧ D <: C.
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Calculi Syntax

Expressions e ::= x | i | e : A | e1 e2 | λx .e : A→ B | e1, , e2 | {l = e} | e.l
Raw Values p ::= i | λx .e : A→ B

Values v ::= p : Ao | v1, , v2 | {l = v}

Contexts Γ ::= · | Γ, x : A

• Values carry extra annotations as runtime types;

• The dispatching is based on runtime types;

• The restriction on runtime types settles a canonical form of overloaded functions.
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Operational Semantics

Step-App

(v1 • v2) ↪→ e
v1 v2 7−→ e

Step-Prj

(v • l) ↪→ v ′

v.l 7−→ v ′
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Applicative Dispatching
13

(v • vl) ↪→ e (Applicative Dispatching)

App-Lam

v 7−→A v ′

((λx. e : A→ B) : C→ D • v) ↪→ e[x 7→ v ′] : D

App-Proj

({l = v} • l) ↪→ v

App-Mrg-L

⟨v2⟩ ≪ ⟨vl⟩ = . (v1 • vl) ↪→ e
((v1 , , v2) • vl) ↪→ e

App-Mrg-R

⟨v1⟩ ≪ ⟨vl⟩ = . (v2 • vl) ↪→ e
((v1 , , v2) • vl) ↪→ e

App-Mrg-P

⟨v1⟩ ≪ ⟨vl⟩ ≠ . ⟨v2⟩ ≪ ⟨vl⟩ ≠ . (v1 • vl) ↪→ e1 (v2 • vl) ↪→ e2
((v1 , , v2) • vl) ↪→ e1 , , e2

13⟨v⟩ extracts the runtime type of v
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Type Soundness

Theorem (Preservation)

If · ⊢ e⇔ A and e 7−→ e ′, then · ⊢ e ′ ⇐ A.

Theorem (Progress)

If · ⊢ e⇔ A, then e is a value or ∃e ′, e 7−→ e ′.
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More in the paper

• Sound/complete lemmas in the settings of records.

• Three variants of sound/complete lemmas with regard to different subtyping.

• Second calculus with disjoint restriction, is proved to be type sound and deterministic.

• Racket interpreter implementation of the calculi.

Coq Formalisation & Interpreter Implementation

“https://github.com/juniorxxue/applicative-intersection"

https://github.com/juniorxxue/applicative-intersection
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