
1

Introduction Applications ofMerge Operator Challenges Key Ideas

Applicative Intersection Types
December 5, 2022

XuXue 1 Bruno C. d. S. Oliveira 1 NingningXie 2
1
University of Hong Kong

2
University of Cambridge



2

Introduction Applications ofMerge Operator Challenges Key Ideas

Intersection Types

• A term e having the type A& Bmeans e has both A and B.

• Originally introduced by Coppo et al.
1
, it allows λx. x x to be typed ((A→ B) & A) → B.

• In languages like TypeScript, the intersection types are explicitly inhabitated.

interface Name { name: string; }
interface ID { id: number; }
type Person = Name & ID
let e : Person = { id: 42, name: 'Alice'};

1
Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. “Functional characters of solvable

terms”. In:Mathematical Logic Quarterly 27.2-6 (1981), pp. 45–58.



2

Introduction Applications ofMerge Operator Challenges Key Ideas

Intersection Types

• A term e having the type A& Bmeans e has both A and B.
• Originally introduced by Coppo et al.

1
, it allows λx. x x to be typed ((A→ B) & A) → B.

• In languages like TypeScript, the intersection types are explicitly inhabitated.

interface Name { name: string; }
interface ID { id: number; }
type Person = Name & ID
let e : Person = { id: 42, name: 'Alice'};

1
Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. “Functional characters of solvable

terms”. In:Mathematical Logic Quarterly 27.2-6 (1981), pp. 45–58.



2

Introduction Applications ofMerge Operator Challenges Key Ideas

Intersection Types

• A term e having the type A& Bmeans e has both A and B.
• Originally introduced by Coppo et al.

1
, it allows λx. x x to be typed ((A→ B) & A) → B.

• In languages like TypeScript, the intersection types are explicitly inhabitated.

interface Name { name: string; }
interface ID { id: number; }
type Person = Name & ID
let e : Person = { id: 42, name: 'Alice'};

1
Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. “Functional characters of solvable

terms”. In:Mathematical Logic Quarterly 27.2-6 (1981), pp. 45–58.



3

Introduction Applications ofMerge Operator Challenges Key Ideas

Merge Operator
3

• e1, , e2means it can be used as e1 or e2.

• Force intersection types to be explicitly introduced and inhabitated.
• Typing for merge is

2

T-Mrg

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B
Γ ⊢ e1 , , e2 ⇒ A&B

• Merge operator adds expressive power and enables many applications.

2
We use bidirectional typing, Γ ⊢ e ⇔ A, and⇔::=⇐|⇒
3
Jana Dunfield. “Elaborating intersection and union types”. In: Journal of Functional Programming 24.2-3

(2014), pp. 133–165.



3

Introduction Applications ofMerge Operator Challenges Key Ideas

Merge Operator
3

• e1, , e2means it can be used as e1 or e2.
• Force intersection types to be explicitly introduced and inhabitated.
• Typing for merge is

2

T-Mrg

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B
Γ ⊢ e1 , , e2 ⇒ A&B

• Merge operator adds expressive power and enables many applications.

2
We use bidirectional typing, Γ ⊢ e ⇔ A, and⇔::=⇐|⇒
3
Jana Dunfield. “Elaborating intersection and union types”. In: Journal of Functional Programming 24.2-3

(2014), pp. 133–165.



3

Introduction Applications ofMerge Operator Challenges Key Ideas

Merge Operator
3

• e1, , e2means it can be used as e1 or e2.
• Force intersection types to be explicitly introduced and inhabitated.
• Typing for merge is

2

T-Mrg

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B
Γ ⊢ e1 , , e2 ⇒ A&B

• Merge operator adds expressive power and enables many applications.

2
We use bidirectional typing, Γ ⊢ e ⇔ A, and⇔::=⇐|⇒
3
Jana Dunfield. “Elaborating intersection and union types”. In: Journal of Functional Programming 24.2-3

(2014), pp. 133–165.



4

Introduction Applications ofMerge Operator Challenges Key Ideas

Extensible Records
4

• Records can be represented by syntactic sugar of merge operator.
• {x = e1, y = e2, z = e3} can be viewed as {x = e1}, , {y = e2}, , {z = e3}.

• Record width subtyping for free.

{li : Ti}i=1..n..n+k <: {li : Ti}1..n

is subsumed by

{l1 : A}& {l2 : B} <: {l1 : A}

is subsumed by

A& B <: A

4
Luca Cardelli and John CMitchell. “Operations on records”. In:Mathematical structures in computer science 1.1

(1991), pp. 3–48.



4

Introduction Applications ofMerge Operator Challenges Key Ideas

Extensible Records
4

• Records can be represented by syntactic sugar of merge operator.
• {x = e1, y = e2, z = e3} can be viewed as {x = e1}, , {y = e2}, , {z = e3}.
• Record width subtyping for free.

{li : Ti}i=1..n..n+k <: {li : Ti}1..n

is subsumed by

{l1 : A}& {l2 : B} <: {l1 : A}

is subsumed by

A& B <: A

4
Luca Cardelli and John CMitchell. “Operations on records”. In:Mathematical structures in computer science 1.1

(1991), pp. 3–48.



5

Introduction Applications ofMerge Operator Challenges Key Ideas

Record Projection

• Record Projection is standard.

({x = e1}, , {y = e2}).x ↪→ e1

({x = e1}, , {y = e2}).y ↪→ e2

• Record Concatenation is simply merging.

({x = e1}, , {y = e2}), , {z = e3}



6

Introduction Applications ofMerge Operator Challenges Key Ideas

Overloaded Functions
5

• Function implementation varies depending on the types of arguments.

• Consider Haskell’s show function.
show :: Show a => a -> String
instance Show Int where

show = showInt
instance Show Bool where

show = showBool
-- instance will be selected according to the argument type
show 1 ↪→ showInt 1 ↪→ "1"
show true ↪→ showBool true ↪→ "true"

• show can be defined as showInt„showBool

5
Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. “A calculus for overloaded functions with

subtyping”. In: Information and Computation 117.1 (1995), pp. 115–135.



6

Introduction Applications ofMerge Operator Challenges Key Ideas

Overloaded Functions
5

• Function implementation varies depending on the types of arguments.
• Consider Haskell’s show function.
show :: Show a => a -> String
instance Show Int where

show = showInt
instance Show Bool where

show = showBool
-- instance will be selected according to the argument type
show 1 ↪→ showInt 1 ↪→ "1"
show true ↪→ showBool true ↪→ "true"

• show can be defined as showInt„showBool

5
Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. “A calculus for overloaded functions with

subtyping”. In: Information and Computation 117.1 (1995), pp. 115–135.



7

Introduction Applications ofMerge Operator Challenges Key Ideas

Overloaded Application

• Overloaded Application is standard.

show : (Int -> String) & (Bool -> String)
show = showInt,,showBool
show 1 ↪→ showInt 1 ↪→ "1"
show true ↪→ showBool true ↪→ "true"

• Adding overloading instances is simply by merging.

newShow = show,,showDouble



8

Introduction Applications ofMerge Operator Challenges Key Ideas

Return type Overloading
6

• Function implementation varies depending on the surrounding contexts.

• Consider Haskell’s read function
read :: Read a => String -> a
instance Read Int where

read = readInt
instance Read Bool where

read = readBool
-- instance will be selected according to surrounding contexts
succ (read "1") ↪→ 2
not (read "true") ↪→ false

• Calculi with merge operator can do in a similar way.

read : (String -> Int) & (String -> Bool)
read = readInt,,readBool

6
Koar Marntirosian et al. “Resolution as Intersection Subtyping via Modus Ponens”. In: Proc. ACMProgram.

Lang. 4.OOPSLA (2020).



8

Introduction Applications ofMerge Operator Challenges Key Ideas

Return type Overloading
6

• Function implementation varies depending on the surrounding contexts.

• Consider Haskell’s read function
read :: Read a => String -> a
instance Read Int where

read = readInt
instance Read Bool where

read = readBool
-- instance will be selected according to surrounding contexts
succ (read "1") ↪→ 2
not (read "true") ↪→ false

• Calculi with merge operator can do in a similar way.

read : (String -> Int) & (String -> Bool)
read = readInt,,readBool

6
Koar Marntirosian et al. “Resolution as Intersection Subtyping via Modus Ponens”. In: Proc. ACMProgram.

Lang. 4.OOPSLA (2020).



8

Introduction Applications ofMerge Operator Challenges Key Ideas

Return type Overloading
6

• Function implementation varies depending on the surrounding contexts.

• Consider Haskell’s read function
read :: Read a => String -> a
instance Read Int where

read = readInt
instance Read Bool where

read = readBool
-- instance will be selected according to surrounding contexts
succ (read "1") ↪→ 2
not (read "true") ↪→ false

• Calculi with merge operator can do in a similar way.

read : (String -> Int) & (String -> Bool)
read = readInt,,readBool

6
Koar Marntirosian et al. “Resolution as Intersection Subtyping via Modus Ponens”. In: Proc. ACMProgram.

Lang. 4.OOPSLA (2020).



9

Introduction Applications ofMerge Operator Challenges Key Ideas

Nested Composition
7

• It reflects distributivity of intersection types at the term level.

{l : A}& {l : B} <: {l : A& B} S-Distri-Rcd

(A→ B) & (A→ C) <: A→ (B& C) S-Distri-Arr

• Results extracted from nested terms will be composed when eliminating terms

created by the merge operator.

7
Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. “The essence of nested composition”. In: 32nd

European Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik. 2018.



10

Introduction Applications ofMerge Operator Challenges Key Ideas

Nested Composition via Projection and Application

• For records

({x = e1}, , {x = e2}).x ↪→ e1, , e2

• For overloaded functions

f : Int → Int → Int
g : Int → Bool→ Bool
(f , , g) 1 ↪→ (f 1), , (g 1)

• Both cases are "unnatural"

since we allow repeated labels and ambiguous overloaded application.



10

Introduction Applications ofMerge Operator Challenges Key Ideas

Nested Composition via Projection and Application

• For records

({x = e1}, , {x = e2}).x ↪→ e1, , e2

• For overloaded functions

f : Int → Int → Int
g : Int → Bool→ Bool
(f , , g) 1 ↪→ (f 1), , (g 1)

• Both cases are "unnatural"

since we allow repeated labels and ambiguous overloaded application.



10

Introduction Applications ofMerge Operator Challenges Key Ideas

Nested Composition via Projection and Application

• For records

({x = e1}, , {x = e2}).x ↪→ e1, , e2

• For overloaded functions

f : Int → Int → Int
g : Int → Bool→ Bool
(f , , g) 1 ↪→ (f 1), , (g 1)

• Both cases are "unnatural"

since we allow repeated labels and ambiguous overloaded application.



11

Introduction Applications ofMerge Operator Challenges Key Ideas

Goodness of Nested Composition

• [Nested record composition] Key feature of Compositional Programming8.
◦ solves the Expression Problem naturally.

◦ models forms of family polymorphism.

• [Nested function composition] It enables first-class curried overloaded functions.
◦ overloaded functions are default curried;

◦ we can abstract and return overloaded functions in a flexible way;

◦ it’s a novel and interesting finding in this work.

8
Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. “Compositional Programming”. In: ACM

Transactions on Programming Languages and Systems (TOPLAS) 43.3 (2021), pp. 1–61.



11

Introduction Applications ofMerge Operator Challenges Key Ideas

Goodness of Nested Composition

• [Nested record composition] Key feature of Compositional Programming8.
◦ solves the Expression Problem naturally.

◦ models forms of family polymorphism.

• [Nested function composition] It enables first-class curried overloaded functions.
◦ overloaded functions are default curried;

◦ we can abstract and return overloaded functions in a flexible way;

◦ it’s a novel and interesting finding in this work.

8
Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. “Compositional Programming”. In: ACM

Transactions on Programming Languages and Systems (TOPLAS) 43.3 (2021), pp. 1–61.



12

Introduction Applications ofMerge Operator Challenges Key Ideas

Challenges in Type Inference

In traditional calculi, we have the typing rule for application:

Γ ⊢ e1 ⇒ A→ B Γ ⊢ e2 ⇐ A
Γ ⊢ e1 e2 ⇒ B

T-App

This does not apply to case show 1, where

Γ ⊢ show⇒ A& B Γ ⊢ e2 ⇐ ?

Γ ⊢ e1 e2 ⇒ ?
T-App



13

Introduction Applications ofMerge Operator Challenges Key Ideas

Challenges in Type Inference

A direct method is to:

1. assume we have the argument type A;
2. assume the type of function to be a intersection of function types:

(A1 → B1) & (A2 → B2) & ...& (An → Bn)

3. then iterate intersection types by comparing the argument type A and input type Ai;
4. compose the outputs as the result type



13

Introduction Applications ofMerge Operator Challenges Key Ideas

Challenges in Type Inference

A direct method is to:

1. assume we have the argument type A;
2. assume the type of function to be a intersection of function types:

(A1 → B1) & (A2 → B2) & ...& (An → Bn)

3. then iterate intersection types by comparing the argument type A and input type Ai;

4. compose the outputs as the result type



13

Introduction Applications ofMerge Operator Challenges Key Ideas

Challenges in Type Inference

A direct method is to:

1. assume we have the argument type A;
2. assume the type of function to be a intersection of function types:

(A1 → B1) & (A2 → B2) & ...& (An → Bn)

3. then iterate intersection types by comparing the argument type A and input type Ai;
4. compose the outputs as the result type



14

Introduction Applications ofMerge Operator Challenges Key Ideas

Challenges in Dynamic Semantics

A direct method is to:

1. assume the overloaded function to be a merge of functions,

2. then select correct instances according to the types.

◦ call-by-value strategy

◦ type-dependent semantics



14

Introduction Applications ofMerge Operator Challenges Key Ideas

Challenges in Dynamic Semantics

A direct method is to:

1. assume the overloaded function to be a merge of functions,

2. then select correct instances according to the types.

◦ call-by-value strategy

◦ type-dependent semantics



14

Introduction Applications ofMerge Operator Challenges Key Ideas

Challenges in Dynamic Semantics

A direct method is to:

1. assume the overloaded function to be a merge of functions,

2. then select correct instances according to the types.

◦ call-by-value strategy

◦ type-dependent semantics



15

Introduction Applications ofMerge Operator Challenges Key Ideas

Distributivity Breaks the Assumptions

pshow : Unit -> (Int -> String) & (Bool -> String)
pshow = λx. show
pshow unit 1 ↪→ "1"
pshow unit true ↪→ "true"

• pshow is not a merge of functions (wrapped in a lambda);
• its type is not a intersection of function types;
• it’s still treated as an overloaded function.



15

Introduction Applications ofMerge Operator Challenges Key Ideas

Distributivity Breaks the Assumptions

pshow : Unit -> (Int -> String) & (Bool -> String)
pshow = λx. show
pshow unit 1 ↪→ "1"
pshow unit true ↪→ "true"

• pshow is not a merge of functions (wrapped in a lambda);
• its type is not a intersection of function types;
• it’s still treated as an overloaded function.



16

Introduction Applications ofMerge Operator Challenges Key Ideas

Re-interpret Subtyping

We can have two interpretations of A <: B→ C:
• Suppose A, B and C are given, we tell whether the subtyping holds.

(Int → String) & (Bool→ String) <: Int → String

• Suppose A and B are given, we infer the result type C9.

(Int → String) & (Bool→ String) <: Int → ?

9
which is also the type of overloaded application.



17

Introduction Applications ofMerge Operator Challenges Key Ideas

Applicative Subtyping

A≪ S is a specialized subtyping used to infer the type of applications and projections
10
.

A1 → A2 ≪ B = A2 when B <: A1 (1)

A1 → A2 ≪ B = . when¬(B <: A1) (2)

{l = A} ≪ l = A (3)

{l1 = A} ≪ l2 = . when l1 ̸= l2 (4)

A1 & A2 ≪ S = (A1 ≪ S)⊚ (A2 ≪ S) (5)

A≪ S = . otherwise (6)

10S ::= A | l, Selector S is either type A or label l



18

Introduction Applications ofMerge Operator Challenges Key Ideas

Examples of Applicative Subtyping

show 1

(Int → String) & (Bool→ String) ≪ Int
by (5) ↪→ (Int → String) ≪ Int ⊚ (Bool→ String) ≪ Int

by (1) (2) ↪→ String⊚ .

read "1"

(String→ Int) & (String→ Bool) ≪ String
by (5) ↪→ (String→ Int) ≪ String⊚ (String→ Bool) ≪ String
by (1) ↪→ Int ⊚ Bool



19

Introduction Applications ofMerge Operator Challenges Key Ideas

Composition Operators

One version that implements nested composition semantics 11.

.⊚ . = .

A1 ⊚ . = A1
.⊚ A2 = A2
A1 ⊚ A2 = A1 & A2

11
We have another version of the operator which models the overloading semantics



20

Introduction Applications ofMerge Operator Challenges Key Ideas

Examples (applying nested composition semantics)

(Int → String) & (Bool→ String) ≪ Int = String
(String→ Int) & (String→ Bool) ≪ String = Int & Bool

{x : String}& {y : String} ≪ y = String



21

Introduction Applications ofMerge Operator Challenges Key Ideas

Let arguments go "together"

We infer both the type of function (merges) and argument together and then compute.

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B A≪ B = C
Γ ⊢ e1 e2 ⇒ C

T-App



22

Introduction Applications ofMerge Operator Challenges Key Ideas

Examples (applying nested composition semantics)

We assume Γ is f : I→ I→ I, g : I→ B→ B. 12

Γ ⊢ (f , , g) ⇒ (I→ I→ I) & (I→ B→ B) Γ ⊢ 2⇒ I

Γ ⊢ (f , , g) 2⇒ (I→ I) & (B→ B)
T-App

Γ ⊢ true⇒ B
Γ ⊢ (f , , g) 2 true⇒ B

T-App

1. f , , g
2. (f , , g) 2
3. (f , , g) 2 true

12I stands for Int, B stands for Bool.



23

Introduction Applications ofMerge Operator Challenges Key Ideas

Metatheory

(Int → String) & (Bool→ String) ≪ Int = String
(String→ Int) & (String→ Bool) ≪ String = Int & Bool

{x : String}& {y : String} ≪ y = String

(Int → String) & (Bool→ String) <: Int → String
(String→ Int) & (String→ Bool) <: String→ Int & Bool

{x : String}& {y : String} <: {y : String}



24

Introduction Applications ofMerge Operator Challenges Key Ideas

Metatheory

Lemma (Soundness (Function))

If A≪ B = C, then A <: B→ C.

Lemma (Completeness (Function))

If A <: B→ C, then ∃D,A≪ B = D∧ D <: C.



25

Introduction Applications ofMerge Operator Challenges Key Ideas

Calculi Syntax

Expressions e ::= x | i | e : A | e1 e2 | λx .e : A→ B | e1, , e2 | {l = e} | e.l
Raw Values p ::= i | λx .e : A→ B

Values v ::= p : Ao | v1, , v2 | {l = v}

Contexts Γ ::= · | Γ, x : A

• Values carry extra annotations as runtime types;

• The dispatching is based on runtime types;

• The restriction on runtime types settles a canonical form of overloaded functions.



26

Introduction Applications ofMerge Operator Challenges Key Ideas

Operational Semantics

Step-App

(v1 • v2) ↪→ e
v1 v2 7−→ e

Step-Prj

(v • l) ↪→ v ′

v.l 7−→ v ′



27

Introduction Applications ofMerge Operator Challenges Key Ideas

Applicative Dispatching
13

(v • vl) ↪→ e (Applicative Dispatching)

App-Lam

v 7−→A v ′

((λx. e : A→ B) : C→ D • v) ↪→ e[x 7→ v ′] : D

App-Proj

({l = v} • l) ↪→ v

App-Mrg-L

⟨v2⟩ ≪ ⟨vl⟩ = . (v1 • vl) ↪→ e
((v1 , , v2) • vl) ↪→ e

App-Mrg-R

⟨v1⟩ ≪ ⟨vl⟩ = . (v2 • vl) ↪→ e
((v1 , , v2) • vl) ↪→ e

App-Mrg-P

⟨v1⟩ ≪ ⟨vl⟩ ≠ . ⟨v2⟩ ≪ ⟨vl⟩ ≠ . (v1 • vl) ↪→ e1 (v2 • vl) ↪→ e2
((v1 , , v2) • vl) ↪→ e1 , , e2

13⟨v⟩ extracts the runtime type of v



28

Introduction Applications ofMerge Operator Challenges Key Ideas

Type Soundness

Theorem (Preservation)

If · ⊢ e⇔ A and e 7−→ e ′, then · ⊢ e ′ ⇐ A.

Theorem (Progress)

If · ⊢ e⇔ A, then e is a value or ∃e ′, e 7−→ e ′.



29

Introduction Applications ofMerge Operator Challenges Key Ideas

More in the paper

• Sound/complete lemmas in the settings of records.

• Three variants of sound/complete lemmas with regard to different subtyping.

• Second calculus with disjoint restriction, is proved to be type sound and deterministic.

• Racket interpreter implementation of the calculi.

Coq Formalisation & Interpreter Implementation

“https://github.com/juniorxxue/applicative-intersection"

https://github.com/juniorxxue/applicative-intersection


Q& A.

30


	Introduction
	Applications of Merge Operator
	Challenges
	Key Ideas
	

