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Abstract. Calculi with intersection types have been used over the years
to model various features, including: overloading, extensible records and,
more recently, nested composition and return type overloading. Never-
theless no previous calculus supports all those features at once. In this
paper we study expressive calculi with intersection types and a merge
operator. Our first calculus supports an unrestricted merge operator,
which is able to support all the features, and is proven to be type sound.
However, the semantics is non-deterministic. In the second calculus we
employ a previously proposed disjointness restriction, to make the se-
mantics deterministic. Some forms of overloading are forbidden, but all
other features are supported. The main challenge in the design is related
to the semantics of applications and record projections. We propose an
applicative subtyping relation that enables the inference of result types
for applications and projections. Correspondingly, there is an applica-
tive dispatching relation that is used for the dynamic semantics. The
two calculi and their proofs are formalized in the Coq theorem prover.

1 Introduction

Calculi with intersection types [3,7,19,22] have a long history in programming
languages. Reynolds [21] was the first to promote the use of intersection types in
practical programming. He introduced a merge operator that enables building
values with multiple types, where the multiple types are modelled as intersection
types. Dunfield [9] refined the merge operator, to add significant additional ex-
pressive power over the original formulation by Reynolds. Over the years there
have been several calculi with intersection types equipped with a merge op-
erator, and enabling different features: overloaded functions [6,9], return type
overloading [16], extensible records [9,21] and nested composition [4,14].

Nevertheless, no previous calculus supports all four features together. Some
calculi enable function overloading [6], but preclude return type overloading
and nested composition. On the other hand, calculi with disjoint intersection
types [4,14] support return type overloading and nested composition, but disal-
low conventional functional overloading. Dunfield’s calculus [9] supports the first
three features, but not nested composition. Those features are not completely
orthogonal and the interactions between them are interesting, allowing for new
applications. However, the interactions also pose new technical challenges.

This paper studies expressive calculi with intersection types and a merge
operator. Our goal is to design calculi that deal with all four features at once, and
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study the interaction between these features. Our two main focuses are on type
inference for applications and record projection, and the design of the operational
semantics for such calculi. To enable all the features we introduce a specialized
form of subtyping, called applicative subtyping, to deal with the flexible forms of
applications and record projection allowed by the calculi. Correspondingly, there
is an applicative dispatching relation that is used for the dynamic semantics. In
addition, we explore the interactions between features. In particular, overloading
and nested composition enable curried overloaded functions, while most previous
work [15,6,9,5] only considers uncurried overloaded functions.

Our first calculus supports an unrestricted merge operator. This calculus is
able to support all four features, and is proven to be type sound. However, the
semantics is non-deterministic. In practice, in an implementation of this calculus
we can employ a biased or asymmetric merge operator, which gives a (biased)
preference to values on the left or right side of merges. This approach is similar
to the approach taken by Dunfield in her calculus [9], and asymmetric merge
(or concatenation) operators are also adopted in several calculi with extensible
records [27,20]. In the second calculus we employ a previously proposed disjoint-
ness restriction [17], to make the semantics deterministic. Disjointness enables
a symmetric merge operator, since conflicts in a merge are statically rejected
rather than resolved with a biased semantics. In the second calculus some forms
of overloading are forbidden, but all other features are supported. The two calculi
and their proofs are formalized in the Coq theorem prover.

In summary, the contributions of this paper are:

– Calculi supporting overloading, extensible records and nested com-
position. We propose calculi with intersection types and a merge operator,
which can support various features together, unlike previous calculi where
only some features were supported.

– Applicative subtyping and dispatching. We develop a specialized ap-
plicative subtyping relation to deal with the problem of inferring result types
for applications and record projections. In addition, the dynamic semantics
supports a corresponding applicative dispatching relation.

– First-class, curried overloading: We show that the interaction between
overloading and nested composition enables overloaded functions to be first-
class, which allows the definition of curried overloaded functions.

– Mechanical formalization and implementation: All the calculi and
proofs are formalized in the Coq theorem prover. The formalization is avail-
able in the artifact [1] and a prototype implementation can be found at:

https://github.com/juniorxxue/applicative-intersection

2 Overview

This section gives an overview of our work and introduces the key technical ideas.
We then illustrate some problems, challenges and solutions when designing type
systems for such calculi and features.

https://github.com/juniorxxue/applicative-intersection
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2.1 Background

Intersection Types and Merge Operator Intersection types describe ex-
pressions that can have multiple types. The intersection type A&B is inhabited
by terms that have both type A and type B. The merge operator (denoted as
, ,) has been introduced by Reynolds [21], and later refined by Dunfield [9], to
create terms with intersection types at the term level. An important feature of
Dunfield’s calculus is that it contains a completely unrestricted merge operator,
which enables most of the applications that we will discuss in this paper, except
for nested composition. However, this expressive power comes at a cost. The
semantics of the calculus is ambiguous. For example, 1,,2 : Int can elaborate
to both 1 and 2. Note that intersection types in the presence of the merge op-
erator have a different interpretation from the original meaning [7], where type
intersections A & B are only inhabited by the intersection of the sets of values
of A and B. In general, with the merge operator, we can always find a term for
any intersection type, even when the two types in the intersection are disjoint
(i.e. when the sets of values denoted by the two types are disjoint). For example,
1,,true has the type Int & Bool. In many classical intersection type systems
without the merge operator, such type would not be inhabited [19]. Thus, the
use of the term “intersection” is merely a historical legacy. The merge operator
adds expressive power to calculi with intersection types. As we shall see, this
added expressive power is useful to model several features of practical interest
for programming languages.
Disjoint intersection types Oliveira et al. [17] solved the ambiguity problem
by imposing a disjointness restriction on merges. Only types that are disjoint
can be merged. For example, Int and Bool are disjoint, so the type Int & Bool is
well-formed and 1,,true is a valid term. Huang et al. [14] improved this calculus
by introducing a type-directed operational semantics where types are used to
assist reduction and proved its type soundness and determinism. Unfortunately,
the restriction to disjoint intersection types, while allowing many of the original
applications, rules out traditional function overloading (see Section 5 for more
details).

2.2 Applications of the Merge Operator

To show that the merge operator is useful, we now cover four applications of
the merge operator that have appeared in the literature: records and record
projections, function overloading, return type function overloading and nested
composition. All applications can be encoded by our calculus in Section 4.
Records and Record Projections The idea of using the merge operator to
model record concatenation firstly appears in Reynold’s work [23]. Records in our
calculi are modelled as merges of multiple single-field records. Multi-field records
can be viewed as syntactic sugar and {x="hello", y="world"} is simply {x =
"hello"},,{y = "world"}. The behaviour of record projection is mostly standard
in our calculi. After being projected by a label, the merged records will return
the associated terms. For instance (↪→ denotes reduce to).
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({x = "hello"},,{y = "world"}).x ↪→ "hello"

Function overloading Function overloading is a form of polymorphism where
the implementation of functions can vary depending on different types of argu-
ments that are applied by functions. There are many ways to represent types of
overloaded functions. For example, suppose show is an overloaded function that
can be applied to either integers or booleans. Haskell utilises type classes [25] to
assign the type Show a ⇒ a → String to show with instances defined.

With intersection types, we can employ the merge operator [6,21] to define a
simplified version of the overloaded show function. For instance, the show function
below has type (Int → String) & (Bool → String).

show : (Int → String) & (Bool → String) = showInt ,,showBool

The behaviour of show is standard, acting as a normal function: it can be
applied to arguments and the correct implementation is selected based on types.

show 1 ↪→ "1" show true ↪→ "true"

Return type overloading One common example of return type overloading
is the read :: Read a ⇒ String → a function in Haskell, which is the reverse
operation of show and parses a string into some other form of data. Like show,
we can define a simplified version of read using the merge operator:

read : (String → Int) & (String → Bool) = readInt ,,readBool

In Haskell, because the return type a cannot be determined by the argument,
read either requires programmers to give an explicit type annotation, or needs
to automatically infer the return type from the context. Our calculi work in a
similar manner. Suppose that succ is the successor function on integers and not
is the negation function on booleans, then we can write:

succ (read "1") ↪→ 2 not (read "true") ↪→ false

Nested Composition Simply stated, nested composition reflects distributivity
properties of intersection types at the term level. When eliminating terms created
by the merge operator (usually functions and records), the results extracted
from nested terms will be composed. In the context of records, the distributive
subtyping rule enabling this behaviour is {l : A}& {l : B} <: {l : A&B}. With this
rule we can have the following expression:

({x = "hello"},,{x = 1}).x ↪→ "hello",,1

Note that here we allow repeated fields with the same name. One may worry
about ambiguities but, with a disjointness restriction, we can only accept fields
with the same labels if the types of the fields are disjoint. Nested composition is a
key feature in compositional programming [29], which uses it to solve challenging
modularity problems such as the Expression Problem [26], and to model forms
of family polymorphism [11]. We refer interested readers to the work of Zhang
et al. [29] for details.
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Nested composition can also occur with functional intersections, using the
subtyping rule (A → B)& (A → C) <: A → (B&C). With this rule, we can, for
example, write the following program:
(succ,,intToDigit) 5 ↪→ 6,,'5'

which applies two functions to the integer 5. Note that here intToDigit takes
an integer and returns a corresponding character. We will also see that nested
composition enables overloaded functions to be curried.

2.3 Challenges in the Design of the Semantics
The goal of this work is to design an automatic type inference algorithm for
applications and record projection and the corresponding dynamic semantics,
so that the system supports all applications presented in the previous section.
Unfortunately, designing the semantics of the merge operator poses significant
challenges, which we explain in the rest of this section.
Inference of Projections and Applications In traditional type systems, in
applications e1 e2 or projections e.l, e1 is expected to have an arrow type and
e is expected to have a record type. Such convention, however, cannot apply
to our system because certain forms of intersection types can also play the role
of arrow or record types. In particular, such use cases of intersection types are
helpful for modelling overloaded functions and multi-field records. For example,
we know that showInt is one branch of show with the subtyping statement:
(Int → String) & (Bool → String) <: Int → String

From this example we can see that the dynamic semantics must somehow be
type-dependent. In our work we follow the type-directed operational semantics
(TDOS) [14] approach, which chooses between merged functions according to
type information during runtime. However, existing TDOS approaches do not
support overloading for two reasons. Firstly, TDOS requires merged functions to
be disjoint with each other, but in this case the merged functions are not disjoint
(i.e., Int → String is not disjoint with Bool → String because of the common
return type String). Secondly, even if we would simply ignore the disjointness
restriction, we would still need to put an explicit type annotation Int → String
and write the program as (show : Int → String) 1 to select the correct imple-
mentation to apply from the overloaded show function. This is because previous
TDOS calculi have restricted application rules that cannot accommodate tradi-
tional overloading. Clearly, in a setting with overloading, having to write such
explicit annotations would be unsatisfying. Therefore we wish to have an ap-
proach where we can write overloaded functions naturally.

A similar problem occurs using record projections in existing TDOS calculi.
For instance, the type system of λi+ [14] requires explicit annotations for projec-
tions of multi-field records with distinct labels, such as ({x = 1},,{y = true}
: {x : Int}).x. This is of course, quite unnatural to write. Although source
languages targetting the TDOS calculi can eliminate the explicit use of such an-
notations at the source level, it would be better to address this problem directly
in the TDOS.
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Dynamic Semantics Giving a direct semantics to overloaded applications is a
non-trivial problem. Thanks to the merge operator and the call-by-value strat-
egy, our overloaded functions are expected to be in the form of nested merges
according to the structure of types. So we can reason about the dynamic seman-
tics as we deal with the types. Unfortunately, the distributivity of subtyping
complicates the story. The challenge comes from the fact that in our setting
overloaded functions are first-class. That is, they can be taken as arguments or
returned as results. For instance, we can have:

pshow : Unit → (Int → String) & (Bool → String)
pshow = λx. show

In this situation, an overloaded function is wrapped with a lambda abstrac-
tion, while it should also be viewed as an overloaded function. For example, we
expect the following to hold:

pshow unit 1 ↪→ "1" pshow unit true ↪→ "true"

In the last two cases, with a traditional approach to applications, pshow is ex-
pected to have type Unit → Int → String and Unit → Bool → String respec-
tively. From the perspective of intersection overloading, pshow should be of type
(Unit → Int → String) & (Unit → Bool → String), which, however, is differ-
ent from the given type annotation. This alternative view of types and functions
poses challenges to the design of the static as well as the dynamic semantics.
Ambiguities on the input types In languages like C++ and Java, overload-
ing cannot be defined on return types, and ambiguities are detected when the
input types of overloaded functions overlap. This is also a reason why many
works model the inputs of overloaded functions as product types [15,6,9]. The
advantages are obvious: it is easier to resolve the correct branch by only com-
paring the product types and types of arguments. The drawback of this model
is that product types will prevent overloaded functions to be curried. This is be-
cause overloaded functions based on product types expect a tuple containing all
the arguments and reject partial applications. The challenge of modelling over-
loaded curried functions is that partial applications may be insufficient to fully
determine the implementation to take from the overloaded function. These pains
can be alleviated using intersection types, the merge operator and the feature of
nested composition.

f : Int → Int → Int g : Int → Bool → Bool

For example, with f,,g, we can simply reason that the result of (f,,g) 1 true is
g 1 true. The problem occurs in the partially applied term (f,,g) 1, for which
there are two possible design choices. The first choice is to reject this application
term since we cannot select between overloads, thus forbidding many use cases
like this. Another choice is to apply f and g in parallel to 1, resulting in (f
1),,(g 1), which has the type (Int → Int) & (Bool → Bool).
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2.4 Key Ideas and Results

Applicative subtyping To help with the inference of the result types for ap-
plications and projections, we propose a new specialized subtyping algorithm
for applications and projections. Specifically, conventional subtyping algorithms
take two types as inputs, and return a boolean indicating whether two types are
in a subtyping relation or not. We present an applicative subtyping algorithm,
whose intuition is simple: given a functional type A (which may be an intersec-
tion of functions), and the type of an argument B, it tells whether this function
can be applied to this argument and, if yes, it computes the output type. Sim-
ilarly, given a record type A, and a label l, applicative subtyping tells whether
this record can be projected by this label, and if yes, it computes the result type
associated with this label. Basically, we try to solve the problem in the following
subtyping form (denoted as <:), where we infer the type ? given the argument
type Int:
(Int → String) & (Bool → String) <: Int → ?

This problem can be split into two steps: first, check whether the application
is well-typed, and if so, determine its output type. For the above example, ? is
expected to be String, as Int is an argument to Int → String. Record projection
works similarly. String & Int should be derived as the result type for projection
({x = "hello"},,{x = 1}).x.
{x : String} & {x : Int} <: {x : ?}

Applicative subtyping is used when typing applications and projections. Our
algorithm adopts the notion of selectors S that abstract the arguments (as a type
for applications, or a label for projections). The behaviour of applicative subtyp-
ing for intersection types is captured by a simple composition operator ⊚ which
isolates particular design choices. In applicative subtyping, a possible result is
that the application fails. We denote failure with a . symbol. We illustrate the
results of applicative subtyping (denoted as �) for the above examples next.
(Int → String) & (Bool → String) � Int = String ⊚ .
(String → Int) & (String → Bool) � String = Int ⊚ Bool
{x : String) & {y : String) � x = String ⊚ .
{x : String) & {x :Int) � x = String ⊚ Int

There are two important things to notice here. Firstly, as discussed above, the
second argument of � is just the function argument type or a label, instead of the
complete type that would be normally used in a subtyping comparison. Secondly,
the results are given in terms of the composition operator ⊚. The composition
operator abstracts behaviour that is specific to particular subtyping relations.
When designing applicative subtyping, a desirable property is that it should be
sound and complete with respect to subtyping. The soundness and completeness
properties can be stated as follows (here we show the case for functions):

Lemma 1 (Soundness). If A � B = C, then A <: B → C.

Lemma 2 (Completeness). If A <: B → C, then ∃D,A � B = D∧D <: C.
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.⊚ . = .

A1 ⊚ . = A1

.⊚A2 = A2

A1 ⊚A2 = A1 &A2

(a) Nested composition semantics.

.⊚ . = .

A1 ⊚ . = A1

.⊚A2 = A2

Amb⊚O = Amb

O⊚Amb = Amb

A1 ⊚A2 = Amb

(b) Overloading semantics.
Fig. 1: Two possible composition operators, for calculi with distributive subtyp-
ing (on the left), and without distributive subtyping (on the right). The notation
Amb denotes ambiguity, which represents a type-error, while the meta-variable
O denotes any output type (i.e. either a type, failure or ambiguity).

Depending on the expressive power of the subtyping relation we need different
implementations of ⊚ to satisfy soundness/completeness. In particular, whether
or not the subtyping relation includes distributive subtyping rules affects the def-
inition of ⊚. Figure 1 illustrates this difference. In a relation with distributive
subtyping rules (such as (A → B)& (A → C) <: A → (B&C)), the composition
operator on the left (a) leads to a sound and complete definition of applicative
subtyping. This operator, which is quite simple, allows combining results that
arise from multiple branches. We say that this composition operator implements
a nested composition semantics, since it allows combining multiple results. For
instance, Int ⊚ Bool simply denotes Int & Bool, meaning that an applicative
subtyping statement (String → Int) & (String → Bool) � String succeeds,
computing the output type Int & Bool. Without the distributive subtyping rule
the composition operator on the left (a) is not sound with respect to subtyping.
Instead we should use the implementation on the right (b), which will reject
cases like Int ⊚ Bool, since such cases denote a form of ambiguity. We say
that the composition operator on the right implements an overloading seman-
tics, since if multiple implementations in an overloaded definition match with
an argument (or a label), we reject the application. This is similar to traditional
overloading mechanisms, which reject such cases as a form of ambiguity. In other
words, in the overloading semantics, only one implementation can be selected
from an overloaded definition. Note that the overloading semantics implemen-
tation can also be used in a calculus with distributivity, but this would lose
the completeness property. One counter example is (Int → String) & (Int →
Int) <: Int → (String & Int), which holds according to the distributivity rule,
but the applicative subtyping based on the overloading semantics will derive an
ambiguity Amb error.
TDOS for Overloading For the semantics, we follow up the idea of typed-
directed operational semantics [14] and define a new judgment that performs
applicative dispatching to support overloading. At a high level, applicative dis-
patch reflects applicative subtyping in the dynamic semantics. As we analyzed
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above, distributivity forbids overloaded functions to be exact nested merges, thus
a canonical form of overloaded function should be settled. To solve this problem
we use an explicit merge with extra annotations that play a role of “runtime
types”, which are used by applicative dispatching to select the correct branch
during runtime.
Two Calculi We present two calculi to demonstrate the applicative subtyp-
ing and applicative dispatching. Both calculi utilize the composition operator
(Figure 1a) since we want to allow nested composition, and explore curried and
first-class overloaded functions. The first calculus embraces a simple design and
adopts an unrestricted merge operator. All features mentioned above can be en-
coded in this calculus, but the calculus will have a non-deterministic semantics
due to ambiguities. For ambiguities, we present a second calculus, which adopts
a restricted merge operator: only terms with disjoint types can be merged. This
calculus is deterministic but excludes certain forms of overloading, like the show
function. Since Int → String is not disjoint with Bool → String, such merges
will be rejected.

3 Applicative Subtyping

In this section, we first present the normal subtyping algorithm for intersection
types and then present applicative subtyping.

3.1 Types and Subtyping

The types that we consider in this work are:

Types A,B ::= Int | Top | A → B | A&B | {l : A}

Ordinary Types Ao, Bo ::= Int | Top | A → Bo | {l : Ao}

A and B are metavariables which range over types. Int and Top are base types
and Top is the supertype of all types. Compound types are function types A → B,
intersection types A&B, and record types {l : A}. Ordinary types [8,14] are es-
sentially types without intersection types, except for functions where intersection
types can appear in argument types.
Algorithmic BCD subtyping Subtyping relations for intersection types can
vary in whether distributivity rules are included or not. For calculi with inter-
section types, a common rule allows the intersection of arrow types to distribute
over arrows. One well-known subtyping relation with such distributivity rule is
BCD subtyping [3]. Huang et al. [14] provide a sound and complete algorithm for
BCD subtyping by eliminating the transitivity rule, and employing the notions
of ordinary types and splittable types. We present that subtyping relation in
Fig. 2. Splittable types describe that types can be split into two simpler types
and ordinary types are those which cannot be split. Rule Sub-And is the most
interesting rule as it captures the distributivity of intersection types over func-
tion types and record types. This rule splits the type B into two types B1 and
B2 and proceeds by testing whether A is a subtype of both B1 and B2.
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A1 �A�A2 (Splittable Types)

Sp-And

A�A&B� B

Sp-Arr
B1 � B� B2

A → B1 �A → B�A → B2

Sp-Rcd
A1 �A�A2

{l : A1}� {l : A}� {l : A2}

A <: B (Subtyping)

Sub-Int

Int <: Int

Sub-Top

A <: Top

Sub-Arr
C <: A B <: Do

A → B <: C → Do

Sub-Rcd
A <: Bo

{l : A} <: {l : Bo}

Sub-And
B1 � B� B2

A <: B1 A <: B2

A <: B

Sub-And-L
A <: Co

A&B <: Co

Sub-And-R
B <: Co

A&B <: Co

Fig. 2: Splittable Types and Algorithmic Subtyping

A1 → A2 � B = A2 when B <: A1 (1)
A1 → A2 � B = . when ¬(B <: A1) (2)
{l = A} � l = A (3)
{l1 = A} � l2 = . when l1 6= l2 (4)
A1 &A2 � S = (A1 � S)⊚ (A2 � S) (5)

A � S = . otherwise (6)

Fig. 3: Applicative Subtyping

3.2 Applicative Subtyping

Applicative subtyping utilises the notion of selectors to find the correct output
type from applicable types. We consider applicable types to be function or record
types. This relation enables the type system to infer the type of applications and
record projections, as shown in Section 4. We model the types of arguments and
labels of record projections as selectors, and the outputs as being either a type
or nothing (denoting the failure to find a suitable output type).

Selectors S ::= A | l Outputs O ::= . | A

The definition of applicative subtyping is given in Fig. 3. Selectors are used as
the second parameter and propagate through the subtyping checks, until we
reach arrow or record types. For arrow types, in rules (1) (2), we check the
contravariant subtyping between input type A1 and argument B. If successful,
the output type A2 is returned, otherwise we fail. For record types (3) (4), we
check the equality between labels. If the labels are equal, we return the output
type A, otherwise we fail. For the case of the intersection types A1 &A2 (5), we
introduce a composition operator ⊚ to combine two results which are derived
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from applying A1 and A2 with the same selector B. Rule (6) covers a number of
missing cases (such as Int � S) which will all fail. For simplicity of presentation
we write those rules as a single rule (6).

The composition operator accepts output results and returns a new output
result. For systems with BCD subtyping, which include distributivity rules, we
use the composition operator implementing the nested composition semantics in
Fig. 1a.

3.3 Metatheory

We proved the soundness and completeness of our applicative subtyping with
respect to the normal subtyping. The decidability of applicative subtyping is
straightforward since it is modelled as a structurally recursive function. We have
two versions of soundness and completeness lemmas. The first version applies to
the case where the supertype is a function:

Lemma 3 (Soundness (Function)). If A � B = C, then A <: B → C.

Lemma 4 (Completeness (Function)). If A <: B → C, then ∃D,A � B =
D∧D <: C.

The soundness lemma is intuitive. If the result of checking applicative subtyping
with a subtype A and and input type B computes a type C then it should be the
case that A <: B → C. For completeness we wish to show that if A is a subtype
of a function type B → C then applicative subtyping will always be able to find
some output type D which is a subtype of C.

The second version of the lemma, which applies to the case where the super-
type is a record, is defined in a similar manner.

Lemma 5 (Soundness (Record)). If A � l = B, then A <: {l : B}.

Lemma 6 (Completeness (Record)). If A <: {l : B}, then ∃C,A � l =
C∧ C <: B.

Remark Note that, if we would drop the distributivity of intersections over other
constructs by removing the rules Sp-Arr and Sp-Rcd, then to have soundness
and completeness we need to employ the composition operator implementing
the overloading semantics to the right of Fig. 1. When using that composition
operator, the soundness lemmas remain the same, but we need to adjust the
completeness lemmas to consider the ambiguous cases. For instance, the com-
pleteness for the case of a function supertype would become:

Lemma 7 (Completeness). If A <: B → C, then (∃D,A � B = D ∧ D <:
C)∨A � B = Amb.
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4 A Calculus with an Unrestricted Merge Operator
This section presents a type sound calculus that supports both intersection types
and a merge operator. This calculus can be viewed as a variant of Dunfield’s cal-
culus (without union types) [9]. Our calculus employs a type-directed operational
semantics [14] instead of using elaboration semantics as proposed by Dunfield
and adopts applicative subtyping and distributive subtyping.

4.1 Syntax
The syntax of this calculus is:

Expressions e ::= x | i | e : A | e1 e2 | λx .e : A → B | e1, , e2 | {l = e} | e.l

Raw Values p ::= i | λx .e : A → B

Values v ::= p : Ao | v1, , v2 | {l = v}

Contexts Γ ::= · | Γ, x : A

Most expressions are standard. Lambda expressions λx. e : A → B are fully anno-
tated because the operational semantics is type-directed. The expression e1, , e2
creates a merge of two expressions e1 and e2. The expression {l = e} denotes
a single-field record with label l and field e. The projection of records is repre-
sented by e.l. Raw values include integers and lambdas, and values are defined
on raw values annotated with ordinary types, merges of values and records whose
fields are values. We stratify raw values and values because we need to utilise
annotations to adopt dispatching in the semantics. The ordinary restriction on
values enforces a canonical form for overloaded functions. Overloaded functions
will be reduced to explicit nested merges, even in settings with distribuivity.

4.2 Typing
Fig. 4 shows our bi-directional type system. Most of the rules are adapted from
traditional bi-directional typing [10]. The novel rules are rules T-App and T-
Proj, whose inferred type is derived from applicative subtyping.
Typing of Application and Projection Our approach to type applications [28]
is to infer the type of functions and arguments at the same time, pass their types
into applicative subtyping (A and B in rule T-App), and assign the computed
result C to applications. This is because we allow intersection types to distribute
over arrow types, thus the type of the function can be an arrow type or an in-
tersection type. We cannot simply extract the input type of a function. Since
multi-field records are also intersection types in our system, the typing for pro-
jections (rule T-Proj) uses a similar idea to applications.
Examples We show an example of how the rule T-App works. Suppose that
we have Γ = f : I → I → I, g : I → B → B. (I and B stand for Int and Bool)

Γ ` (f, , g) ⇒ (I → I → I)& (I → B → B) Γ ` 2 ⇒ I

Γ ` (f, , g) 2 ⇒ (I → I)& (B → B)
T-App

Γ ` true ⇒ B

Γ ` (f, , g) 2 true ⇒ B
T-App



Applicative Intersection Types 13

Γ ` e ⇔ A (Bidirectional Typing)

T-Lit

Γ ` i ⇒ Int

T-Var
x : A ∈ Γ

Γ ` x ⇒ A

T-Lam
Γ, x : A ` e ⇐ B

Γ ` λx. e : A → B ⇒ A → B

T-Rcd
Γ ` e ⇒ A

Γ ` {l = e} ⇒ {l : A}

T-App
Γ ` e1 ⇒ A

Γ ` e2 ⇒ B

A � B = C

Γ ` e1 e2 ⇒ C

T-Proj
Γ ` e ⇒ A

A � l = B

Γ ` e.l ⇒ B

T-Mrg
Γ ` e1 ⇒ A

Γ ` e2 ⇒ B

Γ ` e1 , , e2 ⇒ A&B

T-Ann
Γ ` e ⇐ A

Γ ` e : A ⇒ A

T-Sub
Γ ` e ⇒ A A <: B

Γ ` e ⇐ B

Fig. 4: Bi-directional typing. The bidirectional mode syntax is ⇔ ::= ⇐|⇒.

Note that for space reasons we omit the applicative subtyping derivations here,
which are straightforward. To infer the type of (f, , g) 2 true, we first infer both
the type of (f, , g) 2 and true. The type of (f, , g) 2 is (Int → Int)& (Bool →
Bool). This result is computed from applicative subtyping with two inputs: type
of function merges f, , g and type of 2. Later we use the computed result of
(f, , g) 2 to derive our final type Bool.

4.3 Semantics

This calculus adopts a type-directed operational semantics [14], where type an-
notations are used to cast terms instead of being erased after type checking.
Casting We introduce the casting judgment in Fig. 5. Judgment v 7−→A v ′

describes that value v is cast to value v ′ by type A, thus forcing the value to
match the type structure of A. The casting rules are essentially the same as the
rules proposed by Huang et al. [14]. Rules Ct-Mrg-L and Ct-Mrg-R state
that merges will be cast to one result by ordinary types. For example, show will
be cast to showInt by type Int → String.
Applicative Dispatching We introduce a new judgement called applicative
dispatching (Fig. 5), which extends Huang et al’s [14] parallel application judge-
ment. In contrast to parallel application, we must also deal with overloading.
Judgment (v • vl) ↪→ e describes that value v is applied to value or label vl

(i.e. vl ::= v | l) and then reduced to a term e. Rule App-Lam performs beta-
reduction and appends an extra annotation D to enforce the output type of the
application. Rule App-Proj simply extracts the value from the single record
field. The interesting part is the remaining three rules for merges. The function
〈vl〉 simply extracts out the type of a value, to provide the types to be com-
pared with applicative subtyping. To deal with overloading we need to introduce
rules App-Mrg-L and App-Mrg-R, which allows a merge to be applied when
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v 7−→A v ′ (Casting)

Ct-Int

i : A 7−→Int i : Int

Ct-Top

v 7−→Top > : Top

Ct-Rcd
v 7−→Ao v ′

{l = v} 7−→{l:Ao} {l = v ′}

Ct-Arr
E <: C → Do

(λx. e : A → B) : E 7−→(C→Do) (λx. e : A → Do) : (C → Do)

Ct-Mrg-L
v1 7−→Ao v ′

1

v1 , , v2 7−→Ao v ′
1

Ct-Mrg-R
v2 7−→Ao v ′

2

v1 , , v2 7−→Ao v ′
2

Ct-And
A1 �A�A2
v 7−→A1 v1
v 7−→A2 v2

v 7−→A v1 , , v2

(v • vl) ↪→ e (Applicative Dispatching)

App-Lam
v 7−→A v ′

((λx. e : A → B) : C → D • v) ↪→ e[x 7→ v ′] : D

App-Proj

({l = v} • l) ↪→ v

App-Mrg-L
〈v2〉 � 〈vl〉 = .

(v1 • vl) ↪→ e

((v1 , , v2) • vl) ↪→ e

App-Mrg-R
〈v1〉 � 〈vl〉 = .

(v2 • vl) ↪→ e

((v1 , , v2) • vl) ↪→ e

App-Mrg-P
〈v1〉 � 〈vl〉 6= .

〈v2〉 � 〈vl〉 6= .

(v1 • vl) ↪→ e1
(v2 • vl) ↪→ e2

((v1 , , v2) • vl) ↪→ e1 , , e2

Fig. 5: Casting and Applicative Dispatching

only one of the values is applicable. The last rule, rule App-Mrg-P deals with
the parallel application, where both values in the merge can be applied.
Operational Semantics We present our small-step reduction rules in Fig. 6.
Rules Step-Int-Ann and Step-Arr-Ann append extra annotations to the par-
tial value, in order to preserve the precise types at runtime. Rule Step-Pv-Split
will split terms according to splittable types, forcing the type of each branch in
merges to be ordinary. Rules Step-App and Step-Prj directly call applicative
dispatching. Rule Step-Val-Ann triggers casting: v is cast to v ′ by type A.
Rule Step-Ann is a congruence rule with a restriction that e cannot be a raw
value p. The remaining rules are normal congruence rules.

4.4 Type Soundness
For type soundness, we employ a proof technique similar to the one by Fan et
al. [12]. First we need a number of results about the auxiliary relations used in
reduction. We show some of the more interesting lemmas next:

Lemma 8 (Preservation (Applications and Projections)).
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e 7−→ e ′ (Small-Step Reduction)

Step-Int-Ann

i 7−→ i : Int

Step-Arr-Ann

λx. e : A → B 7−→ (λx. e : A → B) : A → B

Step-App
(v1 • v2) ↪→ e

v1 v2 7−→ e

Step-Pv-Split
A1 �A�A2

p : A 7−→ p : A1 , , p : A2

Step-Prj
(v • l) ↪→ v ′

v.l 7−→ v ′

Step-Ann
¬e ∈ p e 7−→ e ′

e : A 7−→ e ′ : A

Step-Val-Ann
v 7−→A v ′

v : A 7−→ v ′

Step-App-L
e1 7−→ e ′

1

e1 e2 7−→ e ′
1 e2

Step-App-R
e2 7−→ e ′

2

v1 e2 7−→ v1 e
′
2

Step-Mrg-L
e1 7−→ e ′

1

e1 , , e2 7−→ e ′
1 , , e2

Step-Mrg-R
e2 7−→ e ′

2

v1 , , e2 7−→ v1 , , e
′
2

Step-Rcd-R
e 7−→ e ′

{l = e} 7−→ {l = e ′}

Step-Prj-L
e 7−→ e ′

e.l 7−→ e ′.l

Fig. 6: Operational Semantics

– If · ` v1 v2 ⇒ A and v1 • v2 ↪→ e, then · ` e ⇐ A.
– If · ` v.l ⇒ A and v • l ↪→ e, then · ` e ⇐ A.

Lemma 9 (Progress (Applications and Projections)).
– If · ` v1 v2 ⇒ A, then ∃e, v1 • v2 ↪→ e

– If · ` v.l ⇒ A, then ∃e, v • l ↪→ e.

Type soundness is proven via standard preservation and progress theorems.

Theorem 1 (Preservation). If · ` e ⇔ A and e 7−→ e ′, then · ` e ′ ⇐ A.

Theorem 2 (Progress). If · ` e ⇔ A, then e is a value or ∃e ′, e 7−→ e ′.

5 A Calculus with a Disjoint Merge Operator

This section presents a second calculus with a disjointness restriction on merges [17]
to recover determinism. This calculus forbids some cases of conventional over-
loading, but still supports the other features. We focus on the key differences
to the previous calculus, since most rules and relations are the same. Compared
to previous calculi with disjoint intersection types, the main novelty is the use
of the applicative subtyping and dispatching relations, which enables support
for record projections and a restricted form of overloading naturally (without
redundant type annotations).

5.1 Disjointness

We employ the definition of disjointness proposed by Oliveira et al. [17]. Infor-
mally, if all common supertypes of two types are top-like types, we can conclude
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that the two types are disjoint. Top-like types are those who are supertypes of
all types (e.g., Top, Top& Top) and defined as:

Top-like types eAd ::= Top | eAd& eBd | A →eBd | {l :eAd}

Note that the including of such types into top-like types is also part of the
classical BCD subtyping relation [3]. A formal specification of disjointness is
given below. There is a sound and complete set of algorithmic disjointness rules
that conform to this specification. The interested reader can check existing work
for the algorithmic rules [17,14]. For space reasons we omit them here.

Definition 1. (Disjointness) A∗B ≜ ∀C if A <: C∧B <: C, then C is top-like.

In our calculus we allow merges of disjoint functions. Thus, types such as Int →
Int or Int → Bool are disjoint. To include function types into our disjointness,
types like Int → Top should be top-like and supertypes of all types, since other-
wise Int → Int and Int → Bool cannot be disjoint according to our definition.
However, this disjointness definition prevents some forms of overloading. For ex-
ample, the type of show is (Int → String) & (Bool → String), which will be
rejected by the disjointness condition since Int → String is not disjoint with
Bool → String. For those two types we can find a common supertype Int &
Bool → String, which is not top-like. To see why we should prevent such merges
assume that show is allowed, then show (1,,true) : String is ambiguous since
the result can be either "1" or "true". Note that some forms of overloading are
still possible. For instance succ,,not will be accepted since Int → Int is disjoint
with Bool → Bool.

We follow previous work on disjoint intersection types [4] and generalize our
subtyping rule for rule S-Top to be A <:eBd where eBd means that B is a top-like
type. Disjointness has important properties, which are helpful for the metatheory
of the calculus. In particular, if two types are disjoint, their applicative subtyping
results under the same partial types are also disjoint.

Lemma 10 (Applicative Subtyping and Disjointness). If A∗B, A � S =
C1 and B � S = C2, then C1 ∗ C2.

Soundness and completeness of applicative subtyping. With the more
general subtyping rule for top-like types, applicative subtyping remains sound
(with lemmas 3, 5 in Section 3) with respect to subtyping. However, the com-
pleteness of our applicative subtyping needs to be slightly adapted.

Lemma 11 (Completeness of Applicative Subtyping). If A <: B → C,
then (∃D,A � B = D∧D <: C)∨ Top <: C.

In other words, applicative subtyping is complete except for the case where the
output type is top-like. In such case applicative subtyping fails. Note though that
this failure prevents strange programs from being type-checked. For example,
subtyping has instances Top <: A → Top, allowing (1 : Top) 2 to be well-typed,
which would require special treatment in the typing rules. We reject such cases,
making the typing rules simpler, and avoiding type-checking such programs.
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5.2 Typing and Semantics

The main change in typing is that we add a disjoint premise in rule T-Mrg.

Γ ` e1 ⇒ A Γ ` e2 ⇒ B A ∗ B
Γ ` e1, , e2 ⇒ A&B

T-Mrg

Most changes in the dynamic semantics are related to top-like types. Basically
we need some extra conditions in the rules testing whether or not types are top-
like? However, apart from these minor changes, the rules remain essentially the
same. For space reasons we omit the detailed rules here.

5.3 Type Soundness and Determinism

All properties, including subject reduction and type soundness shown in the first
calculus, also hold in this calculus. We only focus on determinism here, which is
the most interesting property of the calculus with disjointness.

Theorem 3 (Determinism). If · ` e ⇔ A, e 7−→ e1 and e 7−→ e2, then
e1 = e2.

6 Related Work

Intersection Types, Merges and Overloading Forsythe, introduced by
Reynolds [21] has a restricted merge operator and its coherent semantics is for-
mally proven. However, it does not account for overloaded functions since mul-
tiple functions are forbidden by merges. Pierce [18] introduced a glue construct
in his calculus F∧ as a language extension to support user-defined overloading
and the types of overloaded functions are also modelled as intersection types.
However his glue operator is unrestricted, leading to a non-deterministic seman-
tics. Castagna et al. [6] gave a formalization to calculus for overloaded functions
with subtyping. In his calculus, overloaded functions are defined as &-terms and
their types are a finite list of arrow types with a consistency restriction. In over-
loaded applications, the “best-match” branch will be selected. The semantics is
type-dependent, and overloaded applications rely on the runtime types, which is
similar to our TDOS approach. Differently to our approach, nested composition
is not supported in his calculus. Moreover, only one branch can be selected in
the overloaded application, thus terms like succ,,intToDigit are rejected, for-
bidding currying on overloaded functions. In their work, records are encoded by
lambda functions and multi-field records are overloaded functions.

Dunfield’s calculus [9] is powerful enough to encode overloaded functions and
record projection. Unlike our calculi, it does not support distributivity and nested
composition. This means that overloaded functions do not interact nicely with
currying. For example, to program pshow unit 1 in her calculus, we should write
((pshow unit) : Int → Bool) 1. As acknowledged by Dunfield, the semantics is
not deterministic. This is similar to our first calculus in Section 4. To restrict the
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power of the merge operator and enable determinism, a disjointness restriction
on merges has been proposed [17]. Closest to our work is the λ+i calculus [14],
which is a deterministic calculus with intersection types and a disjoint merge
operator. There are two major differences between our work and λ+i . (1) Our
first calculus utilizes an unrestricted merge operator, which allows any functions
and records to be merged. (2) Our second calculus can be viewed as a variant of
λ+i that employs applicative subtyping and thus avoids many unnecessary anno-
tations that are required in λ+i since function overloading and record projection
are not directly supported in λ+i . In λ+i , we would need a term with an explicit
type annotation instead: ((succ,,not) : Int → Int) 1. The rigid form of appli-
cations and projections in λ+i prevents expressions such as (succ,,not) 1, which
are not well-typed in λ+i .

In recent work, Rioux et al. [24] proposed a calculus with a disjoint merge
operator that deals with union types and overloading. This is achieved with two
more fine-grained disjointness relations called mergeability and distinguishability.
Similarly to our calculus, they consider an expressive type-level dispatch relation
that plays the same role as applicative subtyping in our calculus. Such dispatch-
ing relation supports union types, unlike our calculus. In terms of the operational
semantics, there are significant differences between our work and Rioux et al.’s
work. While their semantics still employs types at runtime, there is no casting
relation. Instead there are patterns and co-patterns, which enforce runtime coer-
cions via η-expansion. While overloading is supported, the disjointness relations
are still not flexible enough to support return type overloading.
Semantic Subtyping Semantic subtyping [13] takes a different direction to
type overloaded functions with intersection types and union types. In seman-
tic subtyping the semantics of types is set-theoretic and subtyping relations are
derived from the semantics. The type system features intersection types, union
types and negation types. Overloaded functions are defined by a typecase primi-
tive which is similar to the elimination of union types. For example, the type of
show is Int | Bool → String (| denotes union types). The approach to semantic
subtyping of overloaded functions is different from ours, since in our calculi (1)
only intersection types are used to represent types of overloaded functions; and
(2) overloaded functions can be introduced by simply merging functions.

7 Conclusion and Future Work

In this paper, we proposed applicative subtyping, a novel subtyping algorithm to
infer the return types of application and projection. We also designed its corre-
sponding judgment applicative dispatching in the dynamic semantics. Together
these features enable expressive calculi with a merge operator. We present a
type sound calculus that supports all features, but is non-deterministic, and a
second deterministic calculus with a disjointness restriction supporting all fea-
tures except for overloading. Future work includes finding a design that enables
overloading, while preserving determinism. Furthermore we are interested in ex-
tending the calculus with disjoint polymorphism [2].
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